corocittadiroma.it,Pounds,Plums,,Pitted,$28,Grocery Gourmet Food , Produce , Dried Fruits Vegetables,Prunes,,California,/intermesh836592.html,Dried,5,N,Organic,— corocittadiroma.it,Pounds,Plums,,Pitted,$28,Grocery Gourmet Food , Produce , Dried Fruits Vegetables,Prunes,,California,/intermesh836592.html,Dried,5,N,Organic,— $28 Organic Pitted Prunes, 5 Pounds — Dried California Plums, N Grocery Gourmet Food Produce Dried Fruits Vegetables Organic Pitted Prunes 5 Pounds Plums Super Special SALE held — Dried California N $28 Organic Pitted Prunes, 5 Pounds — Dried California Plums, N Grocery Gourmet Food Produce Dried Fruits Vegetables Organic Pitted Prunes 5 Pounds Plums Super Special SALE held — Dried California N

Organic Pitted Prunes 5 Pounds Plums Super Special SALE held Milwaukee Mall — Dried California N

Organic Pitted Prunes, 5 Pounds — Dried California Plums, N

$28

Organic Pitted Prunes, 5 Pounds — Dried California Plums, N

|||

Product Description

Food to Live: Eat Well and Be Healthy

Food to Live is a company committed to making people healthier by providing them with delicious, healthy food. We established this business with a purpose of making a change that would take our world one step closer to being a better place for us and our children.

Food to Live delivers a variety of natural, organic and raw foods that can enable anyone to develop healthy eating habits. All our products can be included into a vegan diet.

Where Do Plums Come From?

Organic Dried Plums from Food To Live allow you to partake in the time-honored tradition of enjoying this incredible fruit in various sweet and savory dishes.

Over 40% of the dried plums available on the world market today come from California, where the climate is perfect for cultivating amazingly delicious plum species.


Food To Live Dried Plum: Benefit of Organic Product

Organic Dried Plums from Food To Live are a safe top-quality product free of any harmful contaminants. They are grown without the use of pesticides, insecticides, and synthetic fertilizers that poison the soil.


Are Dried Plums Prunes?

Don’t get confused when you see terms ‘dried plums’ and ‘prunes’. Those products are basically the same thing, so the terms are often used interchangeably. The trick here is that all types of dried plums used to be called prunes, and this name is still the most popular option in Europe and Asia.


How Are Dried Plums Made?

Dried plums are dehydrated like any other fruit, using a careful application of heat. The process is slow and will require the use of a top-quality dehydrator or an oven if you try to do this at home.

Dried Plum Baby Food: Is It Safe?

Dried plums make an excellent baby food because they are nutritious. Your precious child will joy from snacking on a sweet dried plum fruit.

Organic dried plum baby food is safe to give even before that as long as it’s mashed properly.

Organic Dried Plums Calories: Dietary Considerations

When you think of snacking on dried plums, calories must be taken in consideration as all dried fruits are rather high in them. A cup of prunes has about 415 calories, which is too much for a healthy snack, especially if you are concerned with weight management.

However, 5-6 pitted plums give you a perfect balance of nutrients and energy. This amount of fruit contains about 100-120 calories.


Dried Plums Nutrition: Fiber amp; Protein

Organic dried plums are a very good source of dietary fiber. A cup of the fruit gives you about 12.5 grams of the valuable substance.

The protein content in dried plums isn’t particularly high with only about a gram of amino acids in 1.5 ounces of the fruit. However, due to their overall high nutritional value and pleasantly sweet taste, they can be included in your protein smoothies to make them more delicious.


Dried Plums Fruit: Vitamin amp; Mineral Breakdown

Organic dried plums are great as a snack or an addition to your cooking because they contain lots of essential vitamins and minerals, including:

  • Potassium
  • Copper
  • Manganese
  • Phosphorus
  • Iron
  • Calcium
  • Vitamin K
  • Vitamin A
  • B vitamins

Organic Dried Plums Recipes: Sweet amp; Savory

The easiest way to enjoy the benefits of dried plums is to add them to your morning cereal. As the fruits are sweet, they will help you fight sugar addiction and forego adding sweeteners to such dishes. It’s the same with adding a few organic dried plums to your smoothie.

One of the best ways to use this product is to add it to raw energy bites. Dried plums have a rich delicious flavor and will mix well with other dried fruits, nuts, and seeds. You can include them in any recipe that has dried fruits in it and enhance the flavor of the dish.

A dried plum organics yogurt of your own making will be not only delicious but also great for your digestion as the fiber in the fruit will complement the positive effects of probiotics from the yogurt.

Chutney Dried Plum Sauce Recipe

Ingredients:

  • ¾ cup dried plums (pitted and chopped)
  • 1 cup onions (chopped)
  • 2 apples (cored and chopped)
  • 2 pears (cored and chopped)
  • 1/3 cup raisins
  • 1 orange (juice and zest)
  • ½ cup brown sugar
  • 2/3 cup white wine vinegar
  • 1 tablespoon olive oil
  • 2 tablespoons fresh ginger (grated)
  • 2 pinches saffron threads
  • ¼ teaspoon cinnamon
  • Nutmeg to taste
  • Cayenne pepper to taste
Instructions:
  1. Heat up olive oil in a medium saucepan and cook the onions for a few minutes until they become soft.
  2. Add brown sugar, orange juice, and vinegar, stir thoroughly and let the onions simmer until all liquids evaporate. The substance will start to thicken because of the sugar so your onions will become caramelized.
  3. Add chopped apples and cook your chutney for about 5 minutes before adding pears.
  4. Toss dried plums and raisins into the pan and stir before covering it with a lid or parchment paper and cooking for 10 minutes at minimum heat. Do not stir the mixture during this time.
  5. Remove the pan from heat, open it and add spices and zest. Stir the chutney and let it cool before serving.
This delightful chutney dried plum sauce can be stored in the fridge for up to 4 days if you keep it in an airtight container. You can adjust its flavor however you like by adding other spices. This amount of ingredients will provide you with about 2 ½ cups of chutney, which has less than 2 grams of fat and only 150 calories.


How to Store Organic Dried Plums from Food To Live

Due to their extremely low content of fats and high level of sugar, dried plums do not go bad, so you can store them for years. If the package is unopened and remains in the fridge, they won’t have an expiration date. You can also put the bag in your freezer but do not refreeze them, as this will ruin the texture of the dried plum fruit.

All dried products must be stored dry, so keep your Food To Live Organic Dried Plums in an airtight container at all times.

You also should understand that nutrients in dried foods deteriorate with time. This is an unavoidable process that can be slowed down by keeping the product in the fridge. Never leave your dried plums in a hot place or under direct sunlight as this will speed up the chemical destruction of vitamins and minerals.

About Brand

Healthy Snacks for Everyone

At Food to Live, we offer a wide range of products that aims to meet every person’s needs and tastes. Some of our product lines are dedicated to raw foods that can replace unhealthy junk food we are so used to snacking on in the middle of the day.

With our delicious raw nuts and seeds, as well as dried fruits, you can turn your quick snack into a real power boost that will charge you with essential nutrients. It will help you get into a good mood as not only are these things delicious.

Delicious amp; Nutritious Seeds, Legumes, and Spices

Food to Live caters to everyone who wants to add healthy products to any of their meals. Whether you are a vegan, vegetarian, or an omnivore, our seeds and legumes would fit right into your daily menu.

The wide selection of Food to Live spices would help you add some flavor to any dish. Experiment with them to promote the growth and development of your culinary talent.

Superfoods for the Extra Healthy Boost

More and more people in America discover the benefits of superfoods, which are both delicious and extremely good for you. Food to Live offers a selection of these products that you can incorporate into your diet easily.

Whether you are seeking an extra boost of protein from hemp seeds or fiber and omega fatty acids from chia seeds, we have it all. We understand that weight management is currently a major problem in America and offer products that would help you gain control over your body shape.

Organic Pitted Prunes, 5 Pounds — Dried California Plums, N

The following lists the preprints and final revised papers published within the last 30 days.
24 Sep 2021
Laboratory and field studies of ice-nucleating particles from open-lot livestock facilities in Texas
Naruki Hiranuma, Brent W. Auvermann, Franco Belosi, Jack Bush, Kimberly M. Cory, Dimitrios G. Georgakopoulos, Kristina Höhler, Yidi Hou, Larissa Lacher, Harald Saathoff, Gianni Santachiara, Xiaoli Shen, Isabelle Steinke, Romy Ullrich, Nsikanabasi S. Umo, Hemanth S. K. Vepuri, Franziska Vogel, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14215–14234, https://doi.org/10.5194/acp-21-14215-2021,https://doi.org/10.5194/acp-21-14215-2021, 2021
Short summary
24 Sep 2021
Aerosol effects on electrification and lightning discharges in a multicell thunderstorm simulated by the WRF-ELEC model
Mengyu Sun, Dongxia Liu, Xiushu Qie, Edward R. Mansell, Yoav Yair, Alexandre O. Fierro, Shanfeng Yuan, Zhixiong Chen, and Dongfang Wang
Atmos. Chem. Phys., 21, 14141–14158, https://doi.org/10.5194/acp-21-14141-2021,https://doi.org/10.5194/acp-21-14141-2021, 2021
Short summary
24 Sep 2021
The response of the Amazon ecosystem to the photosynthetically active radiation fields: integrating impacts of biomass burning aerosol and clouds in the NASA GEOS Earth system model
Huisheng Bian, Eunjee Lee, Randal D. Koster, Donifan Barahona, Mian Chin, Peter R. Colarco, Anton Darmenov, Sarith Mahanama, Michael Manyin, Peter Norris, John Shilling, Hongbin Yu, and Fanwei Zeng
Atmos. Chem. Phys., 21, 14177–14197, https://doi.org/10.5194/acp-21-14177-2021,https://doi.org/10.5194/acp-21-14177-2021, 2021
Short summary
24 Sep 2021
Exploring the composition and volatility of secondary organic aerosols in mixed anthropogenic and biogenic precursor systems
Aristeidis Voliotis, Yu Wang, Yunqi Shao, Mao Du, Thomas J. Bannan, Carl J. Percival, Spyros N. Pandis, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 21, 14251–14273, https://doi.org/10.5194/acp-21-14251-2021,https://doi.org/10.5194/acp-21-14251-2021, 2021
Short summary
24 Sep 2021
Mass and density of individual frozen hydrometeors
Karlie N. Rees, Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Chem. Phys., 21, 14235–14250, https://doi.org/10.5194/acp-21-14235-2021,https://doi.org/10.5194/acp-21-14235-2021, 2021
Short summary
24 Sep 2021
Vertagone Topical Oil 5ml (4 Bottle) Instant Relief of Vertigo S
Zhen Qu, Daniel J. Jacob, Lu Shen, Xiao Lu, Yuzhong Zhang, Tia R. Scarpelli, Hannah Nesser, Melissa P. Sulprizio, Joannes D. Maasakkers, A. Anthony Bloom, John R. Worden, Robert J. Parker, and Alba L. Delgado
Atmos. Chem. Phys., 21, 14159–14175, https://doi.org/10.5194/acp-21-14159-2021,https://doi.org/10.5194/acp-21-14159-2021, 2021
Short summary
24 Sep 2021
Measurement report: The chemical composition of and temporal variability in aerosol particles at Tuktoyaktuk, Canada, during the Year of Polar Prediction Second Special Observing Period
John MacInnis, Jai Prakash Chaubey, Crystal Weagle, David Atkinson, and Rachel Ying-Wen Chang
Atmos. Chem. Phys., 21, 14199–14213, https://doi.org/10.5194/acp-21-14199-2021,https://doi.org/10.5194/acp-21-14199-2021, 2021
Short summary
24 Sep 2021
Waist Thigh Trainer Women, 3 in1 High Waist and Thigh Trimmer Bu
Christopher D. Holmes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-752,https://doi.org/10.5194/acp-2021-752, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
24 Sep 2021
Identifying Chemical Aerosol Signatures using Optical Suborbital Observations: How much can optical properties tell us about aerosol composition?
Meloë S. F. Kacenelenbogen, Qian Tan, Sharon P. Burton, Otto P. Hasekamp, Karl D. Froyd, Yohei Shinozuka, Andreas J. Beyersdorf, Luke Ziemba, Kenneth L. Thornhill, Jack E. Dibb, Taylor Shingler, Armin Sorooshian, Reed W. Espinosa, Vanderlei Martins, Jose L. Jimenez, Pedro Campuzano-Jost, Joshua P. Schwarz, Matthew S. Johnson, Jens Redemann, and Gregory L. Schuster
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-761,https://doi.org/10.5194/acp-2021-761, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
24 Sep 2021
Influence of the Change in Total Ozone Column (TOC) on the Occurrence of Tropospheric Ozone Depletion Events (ODEs) in the Antarctic
Le Cao, Linjie Fan, Simeng Li, and Shuangyan Yang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-658,https://doi.org/10.5194/acp-2021-658, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
23 Sep 2021
“Warm cover”: precursory strong signals for haze pollution hidden in the middle troposphere
Xiangde Xu, Wenyue Cai, Tianliang Zhao, Xinfa Qiu, Wenhui Zhu, Chan Sun, Peng Yan, Chunzhu Wang, and Fei Ge
Atmos. Chem. Phys., 21, 14131–14139, https://doi.org/10.5194/acp-21-14131-2021,https://doi.org/10.5194/acp-21-14131-2021, 2021
Short summary
23 Sep 2021
The MAPM (Mapping Air Pollution eMissions) method for inferring particulate matter emissions maps at city scale from in situ concentration measurements: description and demonstration of capability
Brian Nathan, Stefanie Kremser, Sara Mikaloff-Fletcher, Greg Bodeker, Leroy Bird, Ethan Dale, Dongqi Lin, Gustavo Olivares, and Elizabeth Somervell
Atmos. Chem. Phys., 21, 14089–14108, https://doi.org/10.5194/acp-21-14089-2021,https://doi.org/10.5194/acp-21-14089-2021, 2021
Short summary
23 Sep 2021
Total organic carbon and the contribution from speciated organics in cloud water: airborne data analysis from the CAMP2Ex field campaign
Connor Stahl, Ewan Crosbie, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Zenn Marie Cainglet, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Julie Mae Dado, Miguel Ricardo A. Hilario, Gabrielle Frances Leung, Alexander B. MacDonald, Angela Monina Magnaye, Jeffrey Reid, Claire Robinson, Michael A. Shook, James Bernard Simpas, Shane Marie Visaga, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 14109–14129, https://doi.org/10.5194/acp-21-14109-2021,https://doi.org/10.5194/acp-21-14109-2021, 2021
Short summary
23 Sep 2021
Top-down and bottom-up estimates of anthropogenic methyl bromide emissions from eastern China
Haklim Choi, Mi-Kyung Park, Paul J. Fraser, Hyeri Park, Sohyeon Geum, Jens Mühle, Jooil Kim, Ian Porter, Peter K. Salameh, Christina M. Harth, Bronwyn L. Dunse, Paul B. Krummel, Ray F. Weiss, Simon O'Doherty, Dickon Young, and Sunyoung Park
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-699,https://doi.org/10.5194/acp-2021-699, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
23 Sep 2021
Exploration of the atmospheric chemistry of nitrous acid in a coastal city of southeastern China: Results from measurements across four seasons
Baoye Hu, Jun Duan, Youwei Hong, Lingling Xu, Mengren Li, Yahui Bian, Min Qin, Wu Fang, Pinhua Xie, and Jinsheng Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-723,https://doi.org/10.5194/acp-2021-723, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
23 Sep 2021
Advances in Air Quality Research – Current and Emerging Challenges
Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Gregory Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-581,https://doi.org/10.5194/acp-2021-581, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
23 Sep 2021
The Fires, Asian, and Stratospheric Transport-Las Vegas Ozone Study (FAST-LVOS)
Andrew O. Langford, Christoph J. Senff, Raul J. Alvarez II, Ken C. Aikin, Sunil Baidar, Timothy A. Bonin, W. Alan Brewer, Jerome Brioude, Steven S. Brown, Joel D. Burley, Dani J. Caputi, Stephen A. Conley, Patrick D. Cullis, Zachary C. J. Decker, Stéphanie Evan, Guillaume Kirgis, Meiyun Lin, Mariusz Pagowski, Jeff Peischl, Irina Petropavlovskikh, R. Bradley Pierce, Thomas B. Ryerson, Scott P. Sandberg, Chance W. Sterling, Ann W. Weickmann, and Li Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-690,https://doi.org/10.5194/acp-2021-690, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
22 Sep 2021
Two- and three-dimensional structures of the descent of mesospheric trace constituents after the 2013 sudden stratospheric warming elevated stratopause event
David E. Siskind, V. Lynn Harvey, Fabrizio Sassi, John P. McCormack, Cora E. Randall, Mark E. Hervig, and Scott M. Bailey
Atmos. Chem. Phys., 21, 14059–14077, https://doi.org/10.5194/acp-21-14059-2021,https://doi.org/10.5194/acp-21-14059-2021, 2021
Short summary
22 Sep 2021
Globe Men's Los Angered II Skate Shoe
Ramon Campos Braga, Daniel Rosenfeld, Ovid O. Krüger, Barbara Ervens, Bruna A. Holanda, Manfred Wendisch, Trismono Krisna, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 14079–14088, https://doi.org/10.5194/acp-21-14079-2021,https://doi.org/10.5194/acp-21-14079-2021, 2021
Short summary
22 Sep 2021
Environmental sensitivities of shallow-cumulus dilution – Part 2: Vertical wind profile
Sonja Drueke, Daniel J. Kirshbaum, and Pavlos Kollias
Atmos. Chem. Phys., 21, 14039–14058, https://doi.org/10.5194/acp-21-14039-2021,https://doi.org/10.5194/acp-21-14039-2021, 2021
Short summary
22 Sep 2021
Secondary ice production processes in wintertime alpine mixed-phase clouds
Paraskevi Georgakaki, Georgia Sotiropoulou, Étienne Vignon, Anne-Claire Billault-Roux, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-760,https://doi.org/10.5194/acp-2021-760, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
22 Sep 2021
Redistribution of total reactive nitrogen in the lowermost Arctic stratosphere during the cold winter 2015/2016
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-707,https://doi.org/10.5194/acp-2021-707, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
21 Sep 2021
Exceptional loss in ozone in the Arctic winter/spring of 2019/2020
Jayanarayanan Kuttippurath, Wuhu Feng, Rolf Müller, Pankaj Kumar, Sarath Raj, Gopalakrishna Pillai Gopikrishnan, and Raina Roy
Atmos. Chem. Phys., 21, 14019–14037, https://doi.org/10.5194/acp-21-14019-2021,https://doi.org/10.5194/acp-21-14019-2021, 2021
Short summary
21 Sep 2021
Heterogeneous ice nucleation ability of aerosol particles generated from Arctic sea surface microlayer and surface seawater samples at cirrus temperatures
Robert Wagner, Luisa Ickes, Allan K. Bertram, Nora Els, Elena Gorokhova, Ottmar Möhler, Benjamin J. Murray, Nsikanabasi Silas Umo, and Matthew E. Salter
Atmos. Chem. Phys., 21, 13903–13930, https://doi.org/10.5194/acp-21-13903-2021,https://doi.org/10.5194/acp-21-13903-2021, 2021
Short summary
21 Sep 2021
Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants
Xuan Wang, Daniel J. Jacob, William Downs, Shuting Zhai, Lei Zhu, Viral Shah, Christopher D. Holmes, Tomás Sherwen, Becky Alexander, Mathew J. Evans, Sebastian D. Eastham, J. Andrew Neuman, Patrick R. Veres, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Thomas J. Bannan, Carl J. Percival, Ben H. Lee, and Joel A. Thornton
Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021,https://doi.org/10.5194/acp-21-13973-2021, 2021
Short summary
21 Sep 2021
The role of emission reductions and the meteorological situation for air quality improvements during the COVID-19 lockdown period in central Europe
Volker Matthias, Markus Quante, Jan A. Arndt, Ronny Badeke, Lea Fink, Ronny Petrik, Josefine Feldner, Daniel Schwarzkopf, Eliza-Maria Link, Martin O. P. Ramacher, and Ralf Wedemann
Atmos. Chem. Phys., 21, 13931–13971, https://doi.org/10.5194/acp-21-13931-2021,https://doi.org/10.5194/acp-21-13931-2021, 2021
Short summary
21 Sep 2021
Supersaturation, buoyancy, and deep convection dynamics
Wojciech W. Grabowski and Hugh Morrison
Atmos. Chem. Phys., 21, 13997–14018, https://doi.org/10.5194/acp-21-13997-2021,https://doi.org/10.5194/acp-21-13997-2021, 2021
Short summary
21 Sep 2021
Data Assimilation of Volcanic Aerosols using FALL3D+PDAF
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-747,https://doi.org/10.5194/acp-2021-747, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
21 Sep 2021
Changes of Anthropogenic Precursor Emissions Drive Shifts of Ozone Seasonal Cycle throughout Northern Midlatitude Troposphere
Henry Bowman, Steven Turnock, Susanne E. Bauer, Kostas Tsigaridis, Makoto Deushi, Naga Oshima, Fiona M. O'Connor, Larry Horowitz, Tongwen Wu, Jie Zhang, and David D. Parrish
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-786,https://doi.org/10.5194/acp-2021-786, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
21 Sep 2021
Biomass burning and marine aerosol processing over the southeast Atlantic Ocean: A TEM single particle analysis
Caroline Dang, Michal Segal-Rozenhaimer, Haochi Che, Lu Zhang, Paola Formenti, Jonathan Taylor, Amie Dobracki, Sara Purdue, Pui-Shan Wong, Athanios Nenes, Arthur Sedlacek, Hugh Coe, Jens Redemann, Paquita Zuidema, and James Haywood
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-724,https://doi.org/10.5194/acp-2021-724, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
20 Sep 2021
The drivers and health risks of the unexpected surface ozone enhancements over the Sichuan basin, China in 2020
Youwen Sun, Hao Yin, Xiao Lu, Justus Notholt, Mathias Palm, Cheng Liu, Yuan Tian, and Bo Zheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-664,https://doi.org/10.5194/acp-2021-664, 2021
Preprint under review for ACP (discussion: open, 1 comment)
Short summary
20 Sep 2021
Reassessment of the radiocesium resuspension flux from contaminated ground surfaces in East Japan
Mizuo Kajino, Akira Watanabe, Masahide Ishizuka, Kazuyuki Kita, Yuji Zaizen, Takeshi Kinase, Rikuya Hirai, Kakeru Konnai, Akane Saya, Kazuki Iwaoka, Yoshitaka Shiroma, Hidenao Hasegawa, Naofumi Akata, Masahiro Hosoda, Shinji Tokonami, and Yasuhito Igarashi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-687,https://doi.org/10.5194/acp-2021-687, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
20 Sep 2021
Comparison of computational and experimental saturation vapor pressures of α-pinene + O3 oxidation products
Noora Hyttinen, Iida Pullinen, Aki Nissinen, Siegfried Schobesberger, Annele Virtanen, and Taina Yli-Juuti
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-775,https://doi.org/10.5194/acp-2021-775, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
20 Sep 2021
Direct Measurements of Ozone Response to Emissions Perturbations in California
Shenglun Wu, Hyung Joo Lee, Andrea Rohrbacher, Shang Liu, Toshihiro Kuwayama, John H. Seinfeld, and Michael J. Kleeman
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-708,https://doi.org/10.5194/acp-2021-708, 2021
Preprint under review for ACP (discussion: open, 1 comment)
Short summary
17 Sep 2021
Interhemispheric differences of mesosphere–lower thermosphere winds and tides investigated from three whole-atmosphere models and meteor radar observations
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021,https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
17 Sep 2021
Ice and mixed-phase cloud statistics on the Antarctic Plateau
William Cossich, Tiziano Maestri, Davide Magurno, Michele Martinazzo, Gianluca Di Natale, Luca Palchetti, Giovanni Bianchini, and Massimo Del Guasta
Atmos. Chem. Phys., 21, 13811–13833, https://doi.org/10.5194/acp-21-13811-2021,https://doi.org/10.5194/acp-21-13811-2021, 2021
Short summary
17 Sep 2021
Ship emissions around China under gradually promoted control policies from 2016 to 2019
Xiaotong Wang, Wen Yi, Zhaofeng Lv, Fanyuan Deng, Songxin Zheng, Hailian Xu, Junchao Zhao, Huan Liu, and Kebin He
Atmos. Chem. Phys., 21, 13835–13853, https://doi.org/10.5194/acp-21-13835-2021,https://doi.org/10.5194/acp-21-13835-2021, 2021
Short summary
17 Sep 2021
Distinct surface response to black carbon aerosols
Tao Tang, Drew Shindell, Yuqiang Zhang, Apostolos Voulgarakis, Jean-Francois Lamarque, Gunnar Myhre, Gregory Faluvegi, Bjørn H. Samset, Timothy Andrews, Dirk Olivié, Toshihiko Takemura, and Xuhui Lee
Atmos. Chem. Phys., 21, 13797–13809, https://doi.org/10.5194/acp-21-13797-2021,https://doi.org/10.5194/acp-21-13797-2021, 2021
Short summary
17 Sep 2021
A case study on the impact of severe convective storms on the water vapor mixing ratio in the lower mid-latitude stratosphere observed in 2019 over Europe
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-749,https://doi.org/10.5194/acp-2021-749, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
16 Sep 2021
The semiannual oscillation (SAO) in the tropical middle atmosphere and its gravity wave driving in reanalyses and satellite observations
Manfred Ern, Mohamadou Diallo, Peter Preusse, Martin G. Mlynczak, Michael J. Schwartz, Qian Wu, and Martin Riese
Atmos. Chem. Phys., 21, 13763–13795, https://doi.org/10.5194/acp-21-13763-2021,https://doi.org/10.5194/acp-21-13763-2021, 2021
Short summary
16 Sep 2021
Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven Wofsy
Atmos. Chem. Phys., 21, 13729–13746, https://doi.org/10.5194/acp-21-13729-2021,https://doi.org/10.5194/acp-21-13729-2021, 2021
Short summary
16 Sep 2021
A new inverse modeling approach for emission sources based on the DDM-3D and 3DVAR techniques: an application to air quality forecasts in the Beijing–Tianjin–Hebei region
Xinghong Cheng, Zilong Hao, Zengliang Zang, Zhiquan Liu, Xiangde Xu, Shuisheng Wang, Yuelin Liu, Yiwen Hu, and Xiaodan Ma
Atmos. Chem. Phys., 21, 13747–13761, https://doi.org/10.5194/acp-21-13747-2021,https://doi.org/10.5194/acp-21-13747-2021, 2021
Short summary
16 Sep 2021
Distinguishing the impacts of natural and anthropogenic aerosols on global gross primary productivity through diffuse fertilization effect
Hao Zhou, Xu Yue, Yadong Lei, Chenguang Tian, Jun Zhu, Yimian Ma, Yang Cao, Xixi Yin, and Zhiding Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-701,https://doi.org/10.5194/acp-2021-701, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
16 Sep 2021
Albedo susceptibility of Northeastern Pacific stratocumulus: the role of covarying meteorological conditions
Jianhao Zhang, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-754,https://doi.org/10.5194/acp-2021-754, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
15 Sep 2021
Quantifying fossil fuel methane emissions using observations of atmospheric ethane and an uncertain emission ratio
Alice E. Ramsden, Anita L. Ganesan, Luke M. Western, Matthew Rigby, Alistair J. Manning, Amy Foulds, James L. France, Patrick Barker, Peter Levy, Daniel Say, Adam Wisher, Tim Arnold, Chris Rennick, Kieran M. Stanley, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-734,https://doi.org/10.5194/acp-2021-734, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
15 Sep 2021
Parameterising cloud base updraft velocity of marine stratocumuli
Jaakko Ahola, Tomi Raatikainen, Muzaffer Ege Alper, Jukka-Pekka Keskinen, Harri Kokkola, Antti Kukkurainen, Antti Lipponen, Jia Liu, Kalle Nordling, Antti-Ilari Partanen, Sami Romakkaniemi, Petri Räisänen, Juha Tonttila, and Hannele Korhonen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-757,https://doi.org/10.5194/acp-2021-757, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
14 Sep 2021
Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021,https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
14 Sep 2021
A mass-balance-based emission inventory of non-methane volatile organic compounds (NMVOCs) for solvent use in China
Ziwei Mo, Ru Cui, Bin Yuan, Huihua Cai, Brian C. McDonald, Meng Li, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 21, 13655–13666, https://doi.org/10.5194/acp-21-13655-2021,https://doi.org/10.5194/acp-21-13655-2021, 2021
Short summary
14 Sep 2021
A comprehensive observation-based multiphase chemical model analysis of sulfur dioxide oxidations in both summer and winter
Huan Song, Keding Lu, Can Ye, Huabin Dong, Shule Li, Shiyi Chen, Zhijun Wu, Mei Zheng, Limin Zeng, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 13713–13727, https://doi.org/10.5194/acp-21-13713-2021,https://doi.org/10.5194/acp-21-13713-2021, 2021
Short summary
14 Sep 2021
Atmospheric oxidation of α,β-unsaturated ketones: kinetics and mechanism of the OH radical reaction
Niklas Illmann, Rodrigo Gastón Gibilisco, Iustinian Gabriel Bejan, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 13667–13686, https://doi.org/10.5194/acp-21-13667-2021,https://doi.org/10.5194/acp-21-13667-2021, 2021
Short summary
14 Sep 2021
Evaluation of the daytime tropospheric loss of 2-methylbutanal
María Asensio, María Antiñolo, Sergio Blázquez, José Albaladejo, and Elena Jiménez
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-758,https://doi.org/10.5194/acp-2021-758, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
14 Sep 2021
A climatology of open and closed mesoscale cellular convection over the Southern Ocean derived from Himawari-8 observations
Francisco Lang, Luis Ackermann, Yi Huang, Son C. H. Truong, Steven T. Siems, and Michael J. Manton
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-681,https://doi.org/10.5194/acp-2021-681, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
13 Sep 2021
Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe–2018 campaign
Fabio Vargas, Jorge L. Chau, Harikrishnan Charuvil Asokan, and Michael Gerding
Atmos. Chem. Phys., 21, 13631–13654, https://doi.org/10.5194/acp-21-13631-2021,https://doi.org/10.5194/acp-21-13631-2021, 2021
Short summary
13 Sep 2021
In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India
Beth S. Nelson, Gareth J. Stewart, Will S. Drysdale, Mike J. Newland, Adam R. Vaughan, Rachel E. Dunmore, Pete M. Edwards, Alastair C. Lewis, Jacqueline F. Hamilton, W. Joe Acton, C. Nicholas Hewitt, Leigh R. Crilley, Mohammed S. Alam, Ülkü A. Şahin, David C. S. Beddows, William J. Bloss, Eloise Slater, Lisa K. Whalley, Dwayne E. Heard, James M. Cash, Ben Langford, Eiko Nemitz, Roberto Sommariva, Sam Cox, Shivani, Ranu Gadi, Bhola R. Gurjar, James R. Hopkins, Andrew R. Rickard, and James D. Lee
Atmos. Chem. Phys., 21, 13609–13630, https://doi.org/10.5194/acp-21-13609-2021,https://doi.org/10.5194/acp-21-13609-2021, 2021
Short summary
13 Sep 2021
Supercooled liquid water and secondary ice production in Kelvin–Helmholtz instability as revealed by radar Doppler spectra observations
Haoran Li, Alexei Korolev, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 13593–13608, https://doi.org/10.5194/acp-21-13593-2021,https://doi.org/10.5194/acp-21-13593-2021, 2021
Short summary
13 Sep 2021
Are cities responsible for their air pollution?
Philippe Thunis, Alain Clappier, Alexander de Meij, Enrico Pisoni, Bertrand Bessagnet, and Leonor Tarrason
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-739,https://doi.org/10.5194/acp-2021-739, 2021
Preprint under review for ACP (discussion: open, 1 comment)
Short summary
13 Sep 2021
Technical note: Dispersion of cooking-generated aerosols from an urban street canyon
Shang Gao, Mona Kurppa, Chak K. Chan, and Keith Ngan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-515,https://doi.org/10.5194/acp-2021-515, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
13 Sep 2021
Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish sub-Arctic boreal forest
Tuija Jokinen, Katrianne Lehtipalo, Roseline Cutting Thakur, Ilona Ylivinkka, Kimmo Neitola, Nina Sarnela, Totti Laitinen, Markku Kulmala, Tuukka Petäjä, and Mikko Sipilä
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-735,https://doi.org/10.5194/acp-2021-735, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
13 Sep 2021
How well do the CMIP6 models simulate dust aerosols?
Alcide Zhao, Claire L. Ryder, and Laura J. Wilcox
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-578,https://doi.org/10.5194/acp-2021-578, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
13 Sep 2021
New Particle Formation Events Detection with Deep Learning
Peifeng Su, Jorma Joutsensaari, Lubna Dada, Martha Arbayani Zaidan, Tuomo Nieminen, Xinyang Li, Yusheng Wu, Stefano Decesari, Sasu Tarkoma, Tuukka Petäjä, Markku Kulmala, and Petri Pellikka
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-771,https://doi.org/10.5194/acp-2021-771, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
13 Sep 2021
Interactions between the stratospheric polar vortex and Atlantic circulation on seasonal to multi-decadal timescales
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-688,https://doi.org/10.5194/acp-2021-688, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
10 Sep 2021
Characteristics of surface energy balance and atmospheric circulation during hot-and-polluted episodes and their synergistic relationships with urban heat islands over the Pearl River Delta region
Ifeanyichukwu C. Nduka, Chi-Yung Tam, Jianping Guo, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 13443–13454, https://doi.org/10.5194/acp-21-13443-2021,https://doi.org/10.5194/acp-21-13443-2021, 2021
Short summary
10 Sep 2021
In situ observation of new particle formation (NPF) in the tropical tropopause layer of the 2017 Asian monsoon anticyclone – Part 2: NPF inside ice clouds
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Martina Krämer, Peter Spichtinger, Nicole Spelten, Armin Afchine, Christian Rolf, Silvia Viciani, Francesco D'Amato, Holger Tost, and Stephan Borrmann
Atmos. Chem. Phys., 21, 13455–13481, https://doi.org/10.5194/acp-21-13455-2021,https://doi.org/10.5194/acp-21-13455-2021, 2021
Short summary
10 Sep 2021
Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds
Andreas Tilgner, Thomas Schaefer, Becky Alexander, Mary Barth, Jeffrey L. Collett Jr., Kathleen M. Fahey, Athanasios Nenes, Havala O. T. Pye, Hartmut Herrmann, and V. Faye McNeill
Atmos. Chem. Phys., 21, 13483–13536, https://doi.org/10.5194/acp-21-13483-2021,https://doi.org/10.5194/acp-21-13483-2021, 2021
Short summary
10 Sep 2021
The Brewer–Dobson circulation in CMIP6
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021,https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
10 Sep 2021
Reactions of NO3 with aromatic aldehydes: gas-phase kinetics and insights into the mechanism of the reaction
Yangang Ren, Li Zhou, Abdelwahid Mellouki, Véronique Daële, Mahmoud Idir, Steven S. Brown, Branko Ruscic, Robert S. Paton, Max R. McGillen, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 13537–13551, https://doi.org/10.5194/acp-21-13537-2021,https://doi.org/10.5194/acp-21-13537-2021, 2021
Short summary
10 Sep 2021
Water vapor anomaly over the tropical western Pacific in El Niño winters from radiosonde and satellite observations and ERA5 reanalysis data
Minkang Du, Kaiming Huang, Shaodong Zhang, Chunming Huang, Yun Gong, and Fan Yi
Atmos. Chem. Phys., 21, 13553–13569, https://doi.org/10.5194/acp-21-13553-2021,https://doi.org/10.5194/acp-21-13553-2021, 2021
Short summary
10 Sep 2021
Technical note: Interpretation of field observations of point-source methane plume using observation-driven large-eddy simulations
Anja Ražnjević, Chiel van Heerwaarden, Bart van Stratum, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, and Maarten Krol
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-614,https://doi.org/10.5194/acp-2021-614, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
10 Sep 2021
Measurement report: Photochemical production and loss rates of formaldehyde and ozone across Europe
Clara M. Nussbaumer, John N. Crowley, Jan Schuladen, Jonathan Williams, Sascha Hafermann, Andreas Reiffs, Raoul Axinte, Hartwig Harder, Cheryl Ernest, Anna Novelli, Katrin Sala, Monica Martinez, Chinmay Mallik, Laura Tomsche, Christian Plass-Dülmer, Birger Bohn, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-694,https://doi.org/10.5194/acp-2021-694, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
10 Sep 2021
Evolution of the stratospheric polar vortex edge intensity and duration in the Southern hemisphere over the 1979–2020 period
Audrey Lecouffe, Sophie Godin-Beekmann, Andrea Pazmiño, and Alain Hauchecorne
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-676,https://doi.org/10.5194/acp-2021-676, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
10 Sep 2021
Limitations of the Radon Tracer Method (RTM) to estimate regional Greenhouse Gases (GHG) emissions – a case study for methane in Heidelberg
Ingeborg Levin, Ute Karstens, Samuel Hammer, Julian DellaColetta, Fabian Maier, and Maksym Gachkivskyi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-661,https://doi.org/10.5194/acp-2021-661, 2021
Preprint under review for ACP (discussion: open, 1 comment)
Short summary
10 Sep 2021
Odds and ends of atmospheric mercury in Europe and over northern Atlantic Ocean: Temporal trends of 25 years of measurements
Danilo Custódio, Franz Slemr, Katrine Aspmo Pfaffhuber, T. Gerard Spain, Fidel F. Pankratov, Iana Strigunova, Koketso Molepo, Henrik Skov, Johannes Bieser, and Ralf Ebinghaus
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-753,https://doi.org/10.5194/acp-2021-753, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
09 Sep 2021
Wildfire smoke, Arctic haze, and aerosol effects on mixed-phase and cirrus clouds over the North Pole region during MOSAiC: an introduction
Ronny Engelmann, Albert Ansmann, Kevin Ohneiser, Hannes Griesche, Martin Radenz, Julian Hofer, Dietrich Althausen, Sandro Dahlke, Marion Maturilli, Igor Veselovskii, Cristofer Jimenez, Robert Wiesen, Holger Baars, Johannes Bühl, Henriette Gebauer, Moritz Haarig, Patric Seifert, Ulla Wandinger, and Andreas Macke
Atmos. Chem. Phys., 21, 13397–13423, https://doi.org/10.5194/acp-21-13397-2021,https://doi.org/10.5194/acp-21-13397-2021, 2021
Short summary
09 Sep 2021
Influence of sea salt aerosols on the development of Mediterranean tropical-like cyclones
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Atmos. Chem. Phys., 21, 13353–13368, https://doi.org/10.5194/acp-21-13353-2021,https://doi.org/10.5194/acp-21-13353-2021, 2021
Short summary
09 Sep 2021
Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: regional and interannual variability
Qianqian Song, Zhibo Zhang, Hongbin Yu, Paul Ginoux, and Jerry Shen
Atmos. Chem. Phys., 21, 13369–13395, https://doi.org/10.5194/acp-21-13369-2021,https://doi.org/10.5194/acp-21-13369-2021, 2021
Short summary
09 Sep 2021
Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments
Zhihong Zhuo, Ingo Kirchner, Stephan Pfahl, and Ulrich Cubasch
Atmos. Chem. Phys., 21, 13425–13442, https://doi.org/10.5194/acp-21-13425-2021,https://doi.org/10.5194/acp-21-13425-2021, 2021
Short summary
09 Sep 2021
Role of Criegee intermediates in the formation of sulfuric acid at a Mediterranean (Cape Corsica) site under influence of biogenic emissions
Alexandre Kukui, Michel Chartier, Jinhe Wang, Hui Chen, Sébastien Dusanter, Stéphane Sauvage, Vincent Michoud, Nadine Locoge, Valérie Gros, Thierry Bourrianne, Karine Sellegri, and Jean-Marc Pichon
Atmos. Chem. Phys., 21, 13333–13351, https://doi.org/10.5194/acp-21-13333-2021,https://doi.org/10.5194/acp-21-13333-2021, 2021
Short summary
09 Sep 2021
Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System
Gillian Young, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-662,https://doi.org/10.5194/acp-2021-662, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
09 Sep 2021
Precipitation Susceptibility of Marine Stratocumulus with Variable Above and Below-Cloud Aerosol Concentrations over the Southeast Atlantic
Siddhant Gupta, Greg M. McFarquhar, Joseph R. O'Brien, Michael R. Poellot, David J. Delene, Rose M. Miller, and Jennifer D. Small Griswold
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-677,https://doi.org/10.5194/acp-2021-677, 2021
Preprint under review for ACP (discussion: open, 1 comment)
Short summary
09 Sep 2021
How does the Environment Modulate Aerosol Impacts on Tropical Sea Breeze Convective Systems?
J. Minnie Park and Susan C. van den Heever
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-693,https://doi.org/10.5194/acp-2021-693, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
09 Sep 2021
Mesoscale spatio-temporal variability of airborne lidar-derived aerosol properties in the Barbados region during EUREC4A
Patrick Chazette, Alexandre Baron, and Cyrille Flamant
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-706,https://doi.org/10.5194/acp-2021-706, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
09 Sep 2021
Emission factors of long-lived volatile organic compounds from the 2019–2020 Australian wildfires during the COALA campaign
Asher P. Mouat, Clare Paton-Walsh, Jack B. Simmons, Jhonathan Ramirez-Gamboa, David W. T. Griffith, and Jennifer Kaiser
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-742,https://doi.org/10.5194/acp-2021-742, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
09 Sep 2021
Occurrence and growth of sub-50 nm aerosol particles in the Amazonian boundary layer
Marco A. Franco, Florian Ditas, Leslie Ann Kremper, Luiz A. T. Machado, Meinrat O. Andreae, Alessandro Araújo, Henrique M. J. Barbosa, Joel F. de Brito, Samara Carbone, Bruna A. Holanda, Fernando G. Morais, Janaína P. Nascimento, Mira L. Pöhlker, Luciana V. Rizzo, Marta Sá, Jorge Saturno, David Walter, Stefan Wolff, Ulrich Pöschl, Paulo Artaxo, and Christopher Pöhlker
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-765,https://doi.org/10.5194/acp-2021-765, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
08 Sep 2021
Dynamics of gaseous oxidized mercury at Villum Research Station during the High Arctic summer
Jakob Boyd Pernov, Bjarne Jensen, Andreas Massling, Daniel Charles Thomas, and Henrik Skov
Atmos. Chem. Phys., 21, 13287–13309, https://doi.org/10.5194/acp-21-13287-2021,https://doi.org/10.5194/acp-21-13287-2021, 2021
Short summary
08 Sep 2021
A satellite-data-driven framework to rapidly quantify air-basin-scale NOx emissions and its application to the Po Valley during the COVID-19 pandemic
Kang Sun, Lingbo Li, Shruti Jagini, and Dan Li
Atmos. Chem. Phys., 21, 13311–13332, https://doi.org/10.5194/acp-21-13311-2021,https://doi.org/10.5194/acp-21-13311-2021, 2021
Short summary
08 Sep 2021
An Ensemble-Variational Inversion System for the Estimation of Ammonia Emissions using CrIS Satellite Ammonia Retrievals
Michael Sitwell and Mark Shephard
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-549,https://doi.org/10.5194/acp-2021-549, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
08 Sep 2021
Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981–2018 in China
Jing Cao, Shuping Situ, Yufang Hao, Shaodong Xie, and Lingyu Li
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-675,https://doi.org/10.5194/acp-2021-675, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
08 Sep 2021
Pan-Arctic seasonal cycles and long-term trends of aerosol properties from ten observatories
Julia Schmale, Sangeeta Sharma, Stefano Decesari, Jakob Pernov, Andreas Massling, Hans-Christen Hansson, Knut von Salzen, Henrik Skov, Elisabeth Andrews, Patricia K. Quinn, Lucia M. Upchurch, Konstantinos Eleftheriadis, and Rita Traversi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-756,https://doi.org/10.5194/acp-2021-756, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
07 Sep 2021
Quantification of uncertainties in the assessment of an atmospheric release source applied to the autumn 2017 106Ru event
Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, and Yelva Roustan
Atmos. Chem. Phys., 21, 13247–13267, https://doi.org/10.5194/acp-21-13247-2021,https://doi.org/10.5194/acp-21-13247-2021, 2021
Short summary
07 Sep 2021
Ammonium nitrate promotes sulfate formation through uptake kinetic regime
Yongchun Liu, Zemin Feng, Feixue Zheng, Xiaolei Bao, Pengfei Liu, Yanli Ge, Yan Zhao, Tao Jiang, Yunwen Liao, Yusheng Zhang, Xiaolong Fan, Chao Yan, Biwu Chu, Yonghong Wang, Wei Du, Jing Cai, Federico Bianchi, Tuukka Petäjä, Yujing Mu, Hong He, and Markku Kulmala
Atmos. Chem. Phys., 21, 13269–13286, https://doi.org/10.5194/acp-21-13269-2021,https://doi.org/10.5194/acp-21-13269-2021, 2021
Short summary
07 Sep 2021
Development and evolution of an anomalous Asian dust event across Europe in March 2020
Laura Tositti, Erika Brattich, Claudio Cassardo, Pietro Morozzi, Alessandro Bracci, Angela Marinoni, Silvana Di Sabatino, Federico Porcù, and Alessandro Zappi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-429,https://doi.org/10.5194/acp-2021-429, 2021
Preprint under review for ACP (discussion: open, 1 comment)
Short summary
06 Sep 2021
Assessing urban methane emissions using column-observing portable Fourier transform infrared (FTIR) spectrometers and a novel Bayesian inversion framework
Taylor S. Jones, Jonathan E. Franklin, Jia Chen, Florian Dietrich, Kristian D. Hajny, Johannes C. Paetzold, Adrian Wenzel, Conor Gately, Elaine Gottlieb, Harrison Parker, Manvendra Dubey, Frank Hase, Paul B. Shepson, Levi H. Mielke, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 13131–13147, https://doi.org/10.5194/acp-21-13131-2021,https://doi.org/10.5194/acp-21-13131-2021, 2021
Short summary
06 Sep 2021
Predicting gas–particle partitioning coefficients of atmospheric molecules with machine learning
Emma Lumiaro, Milica Todorović, Theo Kurten, Hanna Vehkamäki, and Patrick Rinke
Atmos. Chem. Phys., 21, 13227–13246, https://doi.org/10.5194/acp-21-13227-2021,https://doi.org/10.5194/acp-21-13227-2021, 2021
Short summary
06 Sep 2021
Chemical composition, optical properties, and oxidative potential of water- and methanol-soluble organic compounds emitted from the combustion of biomass materials and coal
Tao Cao, Meiju Li, Chunlin Zou, Xingjun Fan, Jianzhong Song, Wanglu Jia, Chiling Yu, Zhiqiang Yu, and Ping'an Peng
Atmos. Chem. Phys., 21, 13187–13205, https://doi.org/10.5194/acp-21-13187-2021,https://doi.org/10.5194/acp-21-13187-2021, 2021
Short summary
06 Sep 2021
Morning boundary layer conditions for shallow to deep convective cloud evolution during the dry season in the central Amazon
Alice Henkes, Gilberto Fisch, Luiz A. T. Machado, and Jean-Pierre Chaboureau
Atmos. Chem. Phys., 21, 13207–13225, https://doi.org/10.5194/acp-21-13207-2021,https://doi.org/10.5194/acp-21-13207-2021, 2021
Short summary
06 Sep 2021
Forecasting and identifying the meteorological and hydrological conditions favoring the occurrence of severe hazes in Beijing and Shanghai using deep learning
Chien Wang
Atmos. Chem. Phys., 21, 13149–13166, https://doi.org/10.5194/acp-21-13149-2021,https://doi.org/10.5194/acp-21-13149-2021, 2021
Short summary
06 Sep 2021
Methane (CH4) sources in Krakow, Poland: insights from isotope analysis
Malika Menoud, Carina van der Veen, Jaroslaw Necki, Jakub Bartyzel, Barbara Szénási, Mila Stanisavljević, Isabelle Pison, Philippe Bousquet, and Thomas Röckmann
Atmos. Chem. Phys., 21, 13167–13185, https://doi.org/10.5194/acp-21-13167-2021,https://doi.org/10.5194/acp-21-13167-2021, 2021
Short summary
06 Sep 2021
Cirrus cloud thinning using a more physically-based ice microphysics scheme in the ECHAM-HAM GCM
Colin Tully, David Neubauer, Nadja Omanovic, and Ulrike Lohmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-685,https://doi.org/10.5194/acp-2021-685, 2021
Preprint under review for ACP (discussion: open, 1 comment)
Short summary
06 Sep 2021
Broman Reflexology Tools, Wood Therapy Massage Tools, Widely Use
Donglin Chen, Hong Liao, Yang Yang, Lei Chen, Delong Zhao, and Deping Ding
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-611,https://doi.org/10.5194/acp-2021-611, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
06 Sep 2021
Circum-Antarctic abundance and properties of CCN and INP
Christian Tatzelt, Silvia Henning, André Welti, Andrea Baccarini, Markus Hartmann, Martin Gysel-Beer, Manuela van Pinxteren, Robin L. Modini, Julia Schmale, and Frank Stratmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-700,https://doi.org/10.5194/acp-2021-700, 2021
Preprint under review for ACP (discussion: open, 0 comments)
Short summary
CC BY 4.0